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Why Trustworthy ML?

• Academic ML Research is “known”, but industry is “unknown”
– High-stake decision making: who should get bail? hired? a loan?
– How is data collected?
– How are ML systems evaluated?
[Noble 2018; Broussard 2018; Benjamin 2019; Gebru 2020; Benjamin 2020; 
Lakkaraju et al. 2020; Varshney 2022] 



Let’s talk about the “system”: lessons from MLOps

ML Research ML Production

Objective Model performance Different stakeholders == 
different objectives

Computational priority Fast training; high 
throughput Fast inference; low latency

Data Static Constant shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

[ Sculley et al. 2015 ]  

[ Huyen 2022 ]
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Problem: Unequal Racial Treatment (Social Justice)

[Petersen et al. 2018] [Dass et al. 2020]

• Large-scale racial disparities in the U.S. criminal justice system 
[Ulmer 2012; Baumer 2013] 

• True scope of systemic racial disparities masked due to missing 
race information [Fox and Swatt 2009; Grosso et al. 2014]



Related Social Justice Problems

• If CJ datasets contain race data, current methods to fill 
missing ethnicity labels:
– Relying on text-based approach via the U.S. Hispanics 

Surnames List [Word and Perkins 1996; Wei et al. 2006; Word et al. 2008; 
Elliott et al. 2009; King and Johnson 2016]

– Subjective human raters’ assessments via visual inspection 
[Blair et al. 2004; King and Johnson 2016; Petersen 2017]

• How does race/ethnicity and facial-characteristics 
matter in criminal justice? 
– Features such as Afrocentric features, skin tone, etc. 
– Outcomes such as arrest, pre-trial, sentencing, incarceration
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Some terminology…

• Facial Processing Technology [Raji et al. 2020]:

– Facial detection: localization and verification of a face
– Facial segmentation: detection + alignment + cropping a face
– Facial analysis: race, gender, age, facial landmarks, etc.
– Face recognition: identification based on 1:1 and 1:N 

In this dissertation project, race is studied as a facial 
analysis feature

• DL == Deep Learning
• DLM == Deep Learning Model



Problem: Unequal Racial Treatment (FPT)
Audits of commercial FPTs:
• Biased classifications against 

females and people of color 
[Buolawamini and Gebru 2018; Raji and 
Buolawamini 2019; Raji et al. 2020]

• Massive public and research 
community outcry have 
caused:
– Bans and moratoria for the use of 

FPT across the world [Raji 2021]

– Complete shutdown (IBM and 
Meta) and major overhaul 
(Microsoft and Amazon) of FPT-
related projects 
[Smith 2018; Krishna 2020; Pesenti
2021]

[Buolawamini and Gebru 2018]



Ongoing FPT debates
Pros

• Rich sociotechnical system – if 
responsibly developed can it 
address CJ disparities?

• Force ML community to 
rethink existing approaches 
and foster greater AI trust

• Shutting down its development 
CANNOT be the answer, many 
socially positive use cases:
– Identify missing/trafficked 

children
– Diagnosing hard to detect/rare 

diseases
– Biometric security 

Cons
• Reinforces societal biases and 

worsen disparities in the CJ 
system

• Continue ignoring and recycling 
inherently flawed standard DL 
methods 

• Trustworthiness and DL-based 
biases are considered “after-
thought”



Research Questions 
• Identify and address different forms of harmful biases 

within an end-to-end DL classification pipeline
– 4 types of biases: labeling bias; representation/data bias; algorithmic bias; 

evaluation bias [Suresh and Guttag 2021]

– Distinct components: Data annotation and preprocessing; DLM training; 
DLM evaluation (inference and interpretation)

• Phase 1 – Multidimensionality of race
– How is race considered in the vision literature?
– Would a DLM’s performance vary if the classification task changed from race 

to race/ethnicity prediction?

• Phase 2 – Create a rigorous evaluation strategy to assess:
– DLM’s inference performance per racial subgroup
– Interpret DLM’s performance: visualize what the DLM “sees”



Research Goals 
• Collaborate with social science/CJ stakeholders 

throughout entire process of DLM development

• Create an equitable DL methodology for generating and 
interpreting racial categories using mugshots
– NOT about a “typical” contribution to the literature
– Rethinking existing standard approaches used in DL-based image 

classification based on “experimentation-based” approaches 
[Muthukumar et al. 2018; Balakrishnan et al. 2021] 

• Provide empirical support and cautionary arguments for 
the specific use of the proposed DL methodology
– Foster AI trustworthiness: rigorously assess an equitable FPT
– Fill missing CJ race labels and uncover racial disparities at scale
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Data and Interdisciplinary Approaches (1/2)
• Analyzed a novel dataset of 195K MDC 

arrestees’ mugshots (2010-2015)

• UM Sociology Student Raters Survey 
14K stratified samples (29-labels) 
including:
– Two Race (Black and White)
– Four Race-Ethnicity (Black Hispanic, 

White Hispanic, Black Non-Hispanic, 
White Non-Hispanic)

• Tackle labeling bias:
– Single-rater “court” labels
– Consensus-rating “student” labels

[Dass et al 2020]



Data and Interdisciplinary Methods (2/2)

[Dass et al. 2020]

Tackle data/representation bias:
• Sample size: Balanced vs. Imbalanced
• Face preprocessing: Original vs. OpenFace
• Additional API augmentations
• Randomized sampling + seed

Tackle algorithmic bias:
• 7 deep CNN architectures

– Baseline: AlexNet and VGGs
– Contemporary: (SE-)ResNe(X)ts

• ImageNet pretraining
• One-cycle and differential learning rates
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Multidimensionality of Race

• Lack of research concerning Hispanic face classification within 
the Computer Vision, Sociolegal and Criminology communities

• In the CV literature, person’s “race” is seen to belong to one of 
several categories White, Black, Hispanic, South Asian…

• From Critical Race Theory, “race” SHOULD NOT be considered 
as singular but a “multidimensional” construct, i.e. Black 
Hispanic or White non-Hispanic, etc. [Hanna et al. 2019]



Phase 1: Black and White Classification Results

[Dass et al. 2020]

• After 28-experiemnts, both sets of DLMs achieved greatest accuracies of 
94.48% (courts) and 91.47% (students) after OpenFace Preprocessing

• No singular model architecture performed best under all experimental 
settings => validates experimentation-based approach!

• Imbalanced vs. balanced highest overall accuracies: ResNet50 (courts, 
OpenFace) gain of only 2.73% compared to VGG19 (courts, OpenFace) 
despite using approx. 100-times more data!



Phase 1: Four Race/Ethnicity Classification Results

[Dass et al. 2020]

• Student DLMs outperformed court DLMs by 12.51% to 22.15% 

• Average balanced court, OpenFace DLMs - 56.44% – not helpful!

• SE-ResNet50 singularly outperformed for OpenFace data



Phase 1: Four Race/Ethnicity Classification Results

[Dass et al. 2020]

Limitations and future improvements:

• “highest” performance: Imbalanced (81.05%) vs. Balanced (61.32%):
o Improved by 19.74%
o But due to 50-times more data
o Suspicious as WH and BnH represent 75% of data

Next steps:
• Go beyond reporting “population” test accuracies
• Look into DLM performance for individual racial subgroups
• DLMs are complex! “Post-hoc” interpretable methods?
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Phase 2: Interdisciplinary Results (1/8)

• Generated approx. 194K
mugshots

• High degree of correspondence 
with generated court labels, 
r = 0.8143

• Suggests a viable method for 
generating missing race-ethnicity 
labels in court databases

• Expand to investigate disparities 
in criminal justice



Phase 2: Extension of Phase 1 Methods

• Contemporary Vision architectures (ImageNet benchmarks)
– DenseNet121
– Unable to load (RL-based) NAS and PNAS architectures on Sickles!

• Extended face preprocessing:
– Original vs. OpenFace vs. MTCNN

• Proposing “self-auditing” strategy for disaggregated 
evaluation



Phase 2: Results (2/8) – Extent of Face Preprocessing

[Dass et al. 2022]



Phase 2: Binary Classification Validation Results (3/8)

• Court-labeled, OpenFace-preprocessed SE-ResNet50 model (97.75%)
– Optimal model experimental combination

• Experimentation-based approach to tackle “No Free Lunch Theorem”
– AlexNet (94%) highest accuracy for student-labeled, original data
– Cannot assume that “best ImageNet architecture” would be optimal for our task

[Dass et al. 2022]



Fairness metric: Disaggregated Evaluation (1/2)

• Rather than assessing overall DLM’s performance as a population 
(Phase 1) – i.e., Black and White [Mitchel et al. 2019]

• Tackle evaluation bias: segregate test datasets and report its 
performance on individual subgroups – i.e., Black or White

• Based on six stratified datasets, segregating them based on race 
=> 12 test datasets
– Each with unique test augmentation parameters
– Each with unique test sample size

• For DLM assessment: keep labeling source constant in terms of 
training and testing data
– Court-trained DLM will be only tested on court-annotated data



Fairness metric: Disaggregated Evaluation (2/2)

[Dass et al. 2022]



Phase 2: “Self-auditing” method

252 model inference interpretability scenarios
= 42 DLMs and 12 “experimental parameters” 
(unseen mugshots from same dataset) 

• Inference: predict binary (Black vs. White) racial categories 
– Ground-truth source: Courts vs. Students
– Extent of face preprocessing: Original vs. OpenFace vs. MTCNN
– Racial category: Black vs. White

• Interpretability “post-hoc” method: visualize DLM top-layer
– Saliency maps: Grad-CAM and guided backpropagation
– Greatest model confidence: correctly (best) and incorrectly (worst) 

mugshots (DLM blind spots) 



Phase 2: Results (4/8) - Self-auditing Court DLMs
5 Highest accuracies for unseen Black and White mugshots

5 Lowest accuracies for unseen Black and White mugshots

[Dass et al. 2022]



Phase 2: Results (5/8) - Self-auditing Student DLMs
5 Highest accuracies for unseen Black and White mugshots

5 Lowest accuracies for unseen Black and White mugshots

[Dass et al. 2022]



Comparing Court DLM “post-hoc” Results (6/8)

[Dass et al. 2022]

Model with the highest test accuracy (99.92%) for Black mugshots

Model with the lowest test accuracy (2.56%) for Black mugshots



Comparing Student DLM “post-hoc” Results (5/5)

[Dass et al. 2022]

Model with the highest test accuracy (98.26%) for White mugshots

Model with the lowest test accuracy (5.38%) for White mugshots
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Discussion and Recommendations (1/2)

• Across 80 “most impactful” inference disaggregated cases:
– 40 highest + 40 lowest test accuracies for Black and White mugshots

• On average, test accuracies for Black mugshots consistently 
outperformed White mugshots by 0.22% to 34.27%

• Surprisingly contradicts “Gender Shades” findings + DOES NOT 
perpetuate current notions of “embedded” bias 

[Dass et al. 2022]



Discussion and Recommendations (2/2)

• Strong evidence for model robustness:
– Overwhelming majority of 80 scenarios, face preprocessing method 

applied during training is different from the inference dataset

• Self-Auditing interpretation results:
– 32 “best” and “worst” mugshots – both saliency maps 

largely focus on the face
o Black mugshots: lower nasal and mouth
o White mugshots: upper cheekbone, mid-nasal and forehead

– Overall, they are inconsistent, however this is good thing:
o Opposes notions that DLMs are biased w.r.t race
o Accuracies alone DO NOT reveal the whole picture
o Valuable insights to better understand DLM generalizability



Ethics and Project limitations
Ethical considerations
• Define project scope: fill missing race CJ data to help uncover CJ racial disparities
• Protect individuals’ privacy: blur mugshots for research/public dissemination
• Provide full transparency regarding end-to-end DLM pipeline:

– Data collection and annotation; DLM training; DLM evaluation and interpretation
– Open to providing trained DLM weights but will not share raw mugshot data

Limitations
• Easy classification task è High model accuracies?
• New biases: racial categories (sampling bias); MDC raters (labeling bias)
• Skin tone or facial features proxy/correlated to race?
• Experimentation-based methods results è scalability issue

– 1,000+ cases to analyze just for binary race! 

• Trying to make “fairer” ML systems è might be illegal
– Explicitly considering race as a classification task is illegal under Equal Credit Opportunity Act
– Bu, if we ignore race è society and ML-based systems are increasingly “color-blind” [Bonilla-

Silva 2006]



Future Work
• Investigate intersectional disaggregated evaluation via self-

auditing, i.e., race-ethnicity [Mitchel et al. 2019]

• Extend methodology to other CJ databases or other face 
benchmark datasets (FairFace; VMER; etc.)

• Modify the DLM classification task to other attributes such as 
gender or skin tone to understand other systemic disparities in CJ

• Investigate effects of inverted faces (Thatcher effect) and other 
model initializations paradigms (ImageNet vs. Random vs. face 
pretrained)

• Disaggregated evaluation may not account for randomness within 
inference datasets, consider other metrics such as confidence 
intervals and p-values that considers uncertainties [Barocas et al. 2021]



Final Thoughts and Conclusion
• To foster greater AI trustworthiness:

– Bring (domain specific) “trustworthy” elements to the forefront of product 
design, development and evaluation

– Include target domain experts and their insights throughout the entire 
process  

• Using experimentation-based approaches, developed an 
equitable DL methodology within an FPT sociotechnical (Vision-
based) system for generating and interpreting racial categories 
using mugshots
– Mitigated 4 types of biases within separate components in a DL pipeline 
– Considering race as multidimensional is difficult even for DLMs 
– Proposed a “self-auditing” strategy for disaggregated evaluation

o Critical finding: DLMs predicted Black mugshots with higher accuracies than White counter 
parts by 0.22% to 34.27%

o Human in the loop + “Post-hoc” methods is essential, if DL systems deployed in high-stakes 
decision making domains
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My next chapter…

Applied Scientist Intern @ Amazon
Fairness and Responsible AI group



Why Trustworthy ML?

“Trustworthiness begins with people, not AI, and what do we want 
from people who are trustworthy?”

Org. Management

Con$idence
Reliability
Openness
Sel$lessness

ML systems 

Accuracy
Robustness

Communication
Empowerment

“Move beyond local task-specific optimizations and think global 
scaling issues”, and,
“Epistemic uncertainty: ML outcomes that have nothing to do with 
probabilities”
Kush Varshney (Distinguished Scientist, IBM Research)

[NIST 2021 – AI Risk Management Workshop]



Impact of FATE Research
Fairness, Accountability, Transparency and Ethics
• 750% increase in accepted papers (2017-2020) [Qian et al. 2021]

• FAccT, AIES “exclusive” conferences
• Since 2012 – full paper and workshop tracks

– Vision (ICCV, CVPR)
– AI/ML conferences (NeurIPS, ICML, AAAI, ICLR)
– Robotics, Medical, NLP etc.

• ML journals
– SI “AI for People”, 2022 AI & Society [Dass et al. 2022]
– SI “Safe and Fair ML” 2022 Machine Learning
– SI “Bias and Fair ML” 2021 Data Mining and Knowledge Discovery

• Industry research groups – PAIR (Google); FATE (Microsoft); FAIR 
(Facebook); AI Fairness 360 (IBM); E&S (Deepmind)



My Interdisciplinary Dissertation in a 
Nutshell (1/2)

• Continued SOTA progress with ML systems, but increased 
distrust by various stakeholders (researchers, public, etc.)

• Long-standing but timely issue of unequal treatment based 
on race – society and technology (sociotechnical)

• Facial Processing Technology – a tool exacerbating racial 
inequalities in CJ or used to help ameliorate them?

• 3+ year journey collaborating with social sciences/CJ 
domain experts studying the Miami-Dade County CJ system



My Interdisciplinary Dissertation in a 
Nutshell (2/2)

• Re-think standard approaches in end-to-end supervised 
DL image classification

• Proposing experimentation-based methods:
– Tackle fairness and bias issues across different DL components
– Race as multidimensional construct
– Rigorous “self-auditing” evaluation approach:

• Model Inference
• Model Interpretation

• Offer empirical support + cautionary recommendations 
to ML/CJ stakeholders via an equitable FPT methodology


