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1. Introduction

Facial Processing Technology (FPT)

g Broadly encompasses various facial classification tasks:

I S T H E R E A . Detection of the face and facial landmarks (eyes, nose, etc.)

Analysis of the face (age, gender, race/ethnicity, etc.)

. Recognition of the face (identify or verify)

[ Source: Algorithmic Justice League ]
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Rise of Fairness, Accountability and Transparency in ML
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[ Source: Time Magazine ]

Outcomes / Inspiration / Consequences:
« Led companies to update their APIls (Buolamwini and Gebru, 2018; Raji and Buolamwini, 2019; Raji et al., 2020)

« Curating “less biased” benchmark datasets (Buolamwini and Gebru, 2018; Merler et al., 2019; Karkkainen and
Joo, 2019)

* Investigate relationships between sensitive physical characteristics and demographic groups (Dwork et al., 2018;
Ryu et al., 2018)



My Inspiration

* Given the lack of research concerning Hispanic face classification
within computer vision, sociolegal and criminology communities...

* Across 13 CV papers, “Race” always seen to belong to one of
several subcategories including White, Black, Hispanic, Indian, East
Asian, Southeast Asian or Middle Eastern...

* From CRT, “Race” should not be considered simply as a singular

defining attribute but as a multidimensional construct (Hanna et
al., 2019)



Research Questions

* How would a DLM’s performance vary if the classification task
changed from race to race-ethnicity prediction using the same
dataset?

* Does the performance of DLM race-ethnicity classifications vary
based on the model architecture?

* Does the performance of these DLM tasks vary when using human
annotations based on a single rater versus multiple raters?



Data and Interdisciplinary Methods (1/2)

* Analyzed a novel dataset of 194K MDC arrestees’

mugshots (2010-2015)
Table 1: Comparing U.S. and MDC
General Demographic Spreads, 2010, vs.

* UM Sociology Student Raters Survey 14K MDC Arrestees Population, 2010 — 2015
stratified samples (29-labels) including:
— Two Race (Black and White) R;:f;:;’;‘“ G“::Zfal Arl‘:zt‘;s
— Four Race-Ethnicity (Black Hispanic, White Black Hispanic
Hispanic, Black Non-Hispanic, White Non- White Hispanic 584% | 39.70%
Hispanic) . Black non—-Hispanic 12.2% 17.1% 37.96%

White non—Hispanic 63.7% 15.4% 13.14%
— Seven Skin Tone (type 1 or “very light” to type 99.98%"
7 or “very dark”) |

Other racial-ethnic groups represented a very small (0.02%)
proportion and were removed from the dataset.

* Fill missing ethnicity labels in court data using [ Source: Dass et al., 2020 — Forthcoming |
“surnames text-based” approach (Word and
Perkins, 1996; Wei et al., 2006; Word et al., 2008;
Elliott et al., 2009; King and Johnson, 2016)



Data and Interdisciplinary Methods (2/2)

* Developed 7 DLMs using transfer
learning based on ImageNet weights
(fastai/PyTorch and Keras/TensorFlow)

* Varying experimental parameters:

(a) Raw Black Mugshot (b) Raw White Mugshot

— Sample size (Balanced vs. Imbalanced)

— Image Preprocessing (Raw vs. OpenFace)
— Metric (Accuracy)

— Hyperparameters (Ir_finder)

- Fi n e-tu n i ng (freeZi ng) (c) OpenFace Black Mugshot (d) OpenFace \’;'hitc Mugshot
[ Source: Dass et al., 2020 — Forthcoming ]




Results (1/3)

Improved DLM prediction accuracies:
v'Race by 5.49%
v Race-Ethnicity by 10.22%

At a cost of annotating 100-times and
50-times more data — which would be
an expensive process

Given small number of skin tone
samples, DLM performed poorly

Co-presented at CCS Social
Informatics Lecture Series called
“Gigabytes for Good”

Table 2: DLM-based results for three
classification tasks using ResNet-50

Classification Task
4 race—ethnicity | 7 skin tone

Balanced | 91.72% 70.71% 63.97%
Imbalanced’ | 97.21% 80.93% 64.39%

" 1K samples per race and race—ethnicity subgroup; 399
samples per skin tone type

I Full dataset: 200K samples for race and race—ethnicity;
Stratified dataset: 14K samples for skin tone



Results (2/3)

Table 2: Comparing the performance of 7 DLMs for binary (Black and White) race classifications based on
court and student annotated mugshots, 2010-2015.

Raw Images OpenFace Raw Images | OpenFace
a0 | 9275% | 92.73% | 80.72%

Inception—v4 94 25% 92 00% 93 98% 88. 22% Inception—v4 97.26% 96.79%
SE-ResNet-50 93.75% | 93.50% 93.98% 91.47% SE-ResNet-50 97.37% 97.18%

SE-ResNext-50_32x4d | 93. 75% 89 25% 94 23% 89 12% SE-ResNext-50_32x4d 97.52% 97.12%

VGG-16_bn 94.00% 92.25% 92.23% 93.98% VGG-16_bn 97.45% 97.13%
VGG-19_bn 94.25% 92.50% 94.48 % 91.47% VGG-19_bn 97.50% 97.08%

(a) Balanced classification: 1,000 samples per race subgroup. (b) Imbalanced classification: full Miami—-Dade County ar-
restee population.

[ Source: Dass et al., 2020 — Forthcoming ]

After 28-experiments, based on two label sources, DLMs achieved greatest accuracies of 94.48% (courts) and
93.98% (students) for a balanced dataset with OpenFace preprocessing

No singular model architecture performed “the best” under all experimental settings

Comparing VGG-19 bn (balanced courts) with ResNet-50 (imbalanced courts), find a gain of only 2.73% despite
using approx. 100-times more data!



Results (3/3)

Table 3: Comparing the performance of 7 DLMs for four race-ethnicity classifications based on court and
student annotated mugshots, 2010-2015.

Raw Images OpenFace Raw Images | OpenFace
Courts Students Courts Students Courts Courts
ResNet-50 56.20% 73.30% 55.31% 70.71% ResNet—50 80.60% 80.93%

6.5 | 61a2% | 748a%
SE—-ResNext—-50_32x4d 61.25% 79 12% 48 31% 70.46% SE—ResNext—-50_32x4d 80.40% 80.77%

(a) Four race—ethnicity classification: balanced (1,000) samples per race (b) Four race—ethnicity classification: imbalanced full ar-
subgroup. restee population.

[ Source: Dass et al., 2020 — Forthcoming ]

Average OpenFace Court data across 7 DLMs, performed slightly better than chance (56.44%) — not helpful!
Improved accuracies for imbalanced court DLMs is suspicious since 75% of data belonged to WH and BnH
[Most Important] Student rated DLMs outperformed their court annotated counterparts consistently, ranging from
12.51% to 22.15% increase in accuracy.

Balanced Student SE-ResNet-50 only underperformed by 6.21% than Imbalanced Court SE-ResNet-50



Model Inference — Validating

non_hispanic_black/non_hispanic_white / 11.95 / 0.0Bispanic_black/non_hispanic_white /6.13 /0.00  hispanic_white/hispanic_black / 5.50 / 0.00

hispanic_white/hispanic_black / 5.13 / 0.01 hispanic_black/non_hispanic_white / 5.11 / 0.01 hispanic_black/non_hispanic_black / 4.71 /0.01

hispanic_white/hispanic_black / 4.65 /0.01  hispanic_black/non_hispanic_white / 4.48 / 0.01 non_hispanic_white/hispanic_black / 4.47 / 0.01




SE-ResNet-50 Model Inference — Testing

1.non_hispanic_white 0.827 1.non_hispanic_white 0.827

Both mugshots were correctly
classified:
o Non-Hispanic White (82.7%)
o Non-Hispanic Black (67.0%)

Two heatmaps reveal:
o Non-Hispanic White — structure
centering about the nose
o Non-Hispanic Black — structure
centering around the (bottom) lips i Lnon_lispanic_black 0.670 Lnon_lispanic.black 0.670

Despite being trained on a balanced
race-ethnicity sample size, confidence
for Black mugshot much lower than
White counterpart

Investigate if similar disparities exist for
larger datasets




Future Work

* Given that ImageNet weights were used, investigate if training DLMs from
scratch or models specifically with face weights makes a difference?

* Inference learning via “Balanced Student Race-Ethnicity” SE-ResNet-50 model:

— Generate additional 190K DLM-based race-ethnicity labels and compare performance with
Imbalanced “surnames text-based” Court trained SE-ResNet-50 (81.05%)

e Evaluate how biased each DLM is w.r.t. each race-ethnicity subgroup and
assess if the new methodology fosters DLMs to be more demographically
inclusive



Conclusions

* Novel multidimensional approach for understanding and annotating
“race” in face datasets by looking at race-ethnicity combinations

* Achieved 74.84% accuracy for race-ethnicity using only 2% of the
annotated dataset — “bigger is not always better”
— Outperforming court records by 12.51% to0 22.15%

— Investigate implications in terms of court sentencing outcomes to suggest
a new methodology for various interested communities

* Moving the literature forward particularly for Hispanics and
working towards a more inclusive approach when building FPTs



